Why the remanufacturing in China lost balance?

Chunqian Ji
Mechanical Engineering
University of Birmingham
Contents

• The figures showing the balance
• What is Remanufacturing?
• Disassembly objective and considerations
• Design for Disassembly and/or Remanufacturing
• Analysis of the cases
• Towards disassembly automation
• Research on remanufacturing in China

Efficiency and feasibility of product disassembly: A case-based study

J.R. Duflou (2)a,*, G. Seliger (1)b, S. Kara (2)c, Y. Umeda d, A. Ometto e, B. Willems a

a Department of Mechanical Engineering, K.U.Leuven, 3001 Heverlee, Belgium
b Department of Machine Tools and Factory Management, Technische Universität Berlin, Germany
c School of Mechanical & Manufacturing Engineering, University of New South Wales, Australia
d Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, Japan
e Department of Production Engineering, School of Engineering of Sao Carlos, University of Sao Paolo, Brazil
<table>
<thead>
<tr>
<th>Cas Profitability</th>
<th>Country/region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Break even</td>
<td>Belgium components</td>
</tr>
<tr>
<td>2 Loss making</td>
<td>China end-of-life fridges</td>
</tr>
<tr>
<td>3 Intermediately profitable</td>
<td>Japan recycling of automotive components</td>
</tr>
<tr>
<td>4 Intermediately profitable</td>
<td>Japan components for manufacturing new photocopiers</td>
</tr>
<tr>
<td>5 Break even</td>
<td>Australia household appliances</td>
</tr>
<tr>
<td>6 Highly profitable</td>
<td>Japan manufacturing of single-use cameras</td>
</tr>
<tr>
<td>7 Highly profitable</td>
<td>United States recycling of engine components</td>
</tr>
<tr>
<td>8 Intermediately profitable</td>
<td>Brazil motive components</td>
</tr>
<tr>
<td>9 Break even</td>
<td>South Korea recycling of automotive components</td>
</tr>
<tr>
<td>10 Intermediately profitable</td>
<td>Brazil motive components</td>
</tr>
<tr>
<td>11 Break even</td>
<td>Belgium household appliances</td>
</tr>
<tr>
<td>12 Loss making</td>
<td>China experimentation of air condition exterior parts</td>
</tr>
<tr>
<td>13 Intermediately profitable</td>
<td>Norway waste electrical and electronic equipment (WEEE)</td>
</tr>
<tr>
<td>14 Loss making</td>
<td>China reuse of end-of-life refrigerators</td>
</tr>
<tr>
<td>15 Highly profitable</td>
<td>United States motive components</td>
</tr>
<tr>
<td>16 Intermediately profitable</td>
<td>Brazil testing of medical systems</td>
</tr>
<tr>
<td>17 Break even</td>
<td>Brazil testing of engines</td>
</tr>
</tbody>
</table>
REFURBISHMENT, REMANUFACTURING, AND MATERIALS RECYCLING

Refurbishment aims to restore products to working order, though possibly with a loss of functional quality.

Remanufacturing conserves the product identity and seeks to bring the product back into an “as new” condition, by carrying out the necessary disassembly, overhaul, and replacement operations.

Recycling denotes material recovery without conserving any product structure.

The remanufacturing process is divided into: disassembly, testing, repair, cleaning, parts inspection, updating, parts replacement and reassembly.
• The main objective: separation of specific fractions of products that will allow the recovery and recycling processes faster and more efficient.
• There are many limitations: that hinder the identification of the most favourable disassembly strategy. This is mainly due to the lack of information about the products’ usage condition, which results in uncertainty of quality of EoL products.
• Complementary to disassembly: monitoring and quality verification techniques are required to determine the usage condition of products and components.
• Proper planning (disassembly depth): Current economic analyses demonstrate that full disassembly is rarely the optimal solution, owing to the high disassembly costs. Selective disassembly, based on the planned EoL destination of individual components, could be a viable alternative.
Principles:

- ease of disassembly,
- ease of cleaning,
- ease of inspection,
- ease of replacing parts,
- ease of handling,
- wear resistance, and
- ease of reassembly.

Others, should be considered during the design

- The adaptability of products,
- The costs of the disassembly process,
- The economical benefits of component reuse or material recycling,
- Costs of final disposal,
- Environmental impact of each EoL alternative.

There are many published papers on this field
Analysis of the cases

MDS (multidimensional scaling) representation of similarity between individual cases and distinguished clusters
A dedicated product design allows highly efficient, fully automated disassembly, the Fuji single-use cameras case (Case 6) forms a separate category.

9 cases related to disassembly and reuse of systems with a high residual reuse value. These cases show a positive average profitability. The majority of these initiatives (7 Cases 3, 7, 8, 9, 10, 15 and 17) concerns automotive components. Refurbishment and remanufacturing of products with a relatively high residual value, such as copier machines (Case 4) and medical instruments (Case 16), can also be considered as part of this cluster.

A number of cases related to the refurbishment of devices with an intermediate residual value, such as household appliances (Cases 5 and 11) and personal computers (Case 1). These operations typically run at break even level.

A last cluster covers cases with recycling as principal target. Different examples of WEEE treatment are included in this category (Cases 2, 12, 13 and 14). The cases are characterised by a low to negative profitability, with Case 13 forming an exception. This last case is characterised by mainly destructive treatment with a high degree of automation. It forms a border case for disassembly, since only limited detoxification efforts can be considered as disassembly actions.
Profitability is higher in countries with a better established legislative system for EoL treatment. The fact that these countries are at the same time characterised by a high salary cost does not necessarily seem to form a negative factor.

Where automation is technically feasible, a high degree of automation seems to positively influence profitability.
<table>
<thead>
<tr>
<th>Case number</th>
<th>Destination of subassemblies or components</th>
<th>Type of disassembly</th>
<th>Automation level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reuse/remanufacturing/material recycling</td>
<td>Partial disassembly</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Reuse/material recycling/incineration without energy recuperation/landfill</td>
<td>Full disassembly</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Spare parts management/material recycling</td>
<td>Partial disassembly</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Reuse/material recycling</td>
<td>Full disassembly</td>
<td>Not specified</td>
</tr>
<tr>
<td>5</td>
<td>Remanufacturing/spare parts management/material recycling/landfill</td>
<td>Partial disassembly</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Reuse/material recycling</td>
<td>Full disassembly</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Remanufacturing/material recycling</td>
<td>Full disassembly</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Spare parts management/material recycling/landfill</td>
<td>Partial disassembly</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Remanufacturing</td>
<td>Partial disassembly</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Remanufacturing/spare parts management/material recycling/landfill</td>
<td>Full disassembly</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Reuse/remanufacturing/spare parts management</td>
<td>Partial disassembly</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>Reuse/material recycling/landfill</td>
<td>Full disassembly</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>Material recycling/incineration with energy recuperation/landfill</td>
<td>Full disassembly</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Reuse/material recycling/incineration without energy recuperation/landfill</td>
<td>Full disassembly</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Spare parts management</td>
<td>Partial disassembly</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>Reuse/incineration without energy recuperation/landfill</td>
<td>Partial disassembly</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>Remanufacturing/spare parts management/material recycling/landfill</td>
<td>Full disassembly</td>
<td>2</td>
</tr>
</tbody>
</table>

Automation level: (1) fully manual; (2) manual with semi-automatic hand tools; (3) partially automated; (4) fully automated.
Towards disassembly automation

Disassembly cannot be considered economically feasible unless a breakeven between costs and benefits is achievable.

- **Manual** operations, supported by (possibly electrically or pneumatically driven) hand tools. A wide range of tools is used, but changeover between tools is typically decided by the operator.
- **Partially automated** operations, also known as hybrid disassembly, refers to using a number of setups in which only specific operations are supported by automated systems. This approach is often used in cases where large numbers of similar products are treated in a partially destructive disassembly procedure. The automated steps involve heavy duty work in which the concerned parts are not recovered as functional components.
- **Fully automated** operations are supported by generic systems such as industrial robots. When dealing with conventional fasteners, such as, bolts, screws, rivets or spot welds, the technical complexity can be enormous. Factors such as non-uniformity of returned product models, customer specific maintenance history, and deformation or corrosion of products, make non-destructive disassembly automation a hard task. Since the economic benefits to be expected from such operations are easily outbalanced by the involved costs, non-destructive automation of generic disassembly systems remains an academic objective.
Manual dismantling time for each LCD unit

Time for dismantling CCFL LCDs

- Time (s) vs. Size (inches)
 - Linear (Ardente et al., 2014)
 - Linear (current results)
- Time (s) vs. Mass (kg)
 - Linear (Ardente et al., 2014)
 - Linear (current results)
- Time (s) vs. Release date (month-year)
 - Linear (current results)

Time for dismantling CCFL LCDs according to their size, mass and release date. Comparison with previous results from Ardente et al. (2014).
The system consists of three co-operating robots, the front working area is for automated disassembly, the back area for manual work.

This automated remanufacturing system is constructed by applying existing automated production technologies, including various automated machines, robots, and AGVs. Difficulty resides within the variety of input products and the importance of inspection and cleaning.

- Firstly, sorting and identification of input products and rejection of broken or other manufacturer’s products are important. Actually, almost half of the space of the remanufacturing system is used for the lining up, identification, and sorting operations.
- Secondly, robust cleaning and repair processes, applicable to varying conditions of used products, are essential.
- And thirdly, sample inspection is not a robust approach in remanufacturing. Therefore, all reusable modules are inspected in this system.
AUTOREMAN

UNIVERSITY OF BIRMINGHAM

Wuhan University of Technology March 2017
Research on remanufacturing in China

The birth of remanufacturing can be traced to the times of world war two (WW2) when resources became scarce and automotive industry was enforced to perform remanufacturing (Automotive Parts Remanufacturers Association, 2015). However, after times of war the remanufacturing industry experienced continuous growth over the years driven primarily by the economic and competitive advantages.

In the beginning of the 2000s, China with its staggering population and rapidly developing industry realized its mismatch between economic development and resulting environmental impacts. As a consequence, the government of China formally accepted the concept of CE as a new development strategy in 2002 and approved the first law “Circular Economy Promotion Law of the People's Republic of China” which took effect in January 2009 (The Standing Committee of the National People's Congress China, 2008).
the concept of CE (circular economy) is considered as a solution for harmonizing ambitions for economic growth and environmental protection.

Example Publications in Journal of Cleaner Production

General issues:

Policies on end-of-life passenger cars in China: dynamic modeling and cost-benefit analysis

Zhiguo Chen a, Dingjiang Chen a,*, Tao Wang b, Shanying Hu a

a Center for Industrial Ecology, Department of Chemical Engineering, Tsinghua University, Beijing, China
b Global Innovation Research Organization, Ritsumeikan University, Kyoto, Japan

Evaluating remanufacturing industry of China using an improved grey fixed weight clustering method—a case of Jiangsu Province

Wenjie Liu a,*, Chenfan Wu a, Xiangyun Chang b, Ye Chen a, Sifeng Liu a

a College of Economics and Management, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211106, China
b Department of Management Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
An inter-sectoral comparison of green supply chain management in China: Drivers and practices

Qinghua Zhu a,*, Joseph Sarkis b,1

a School of Management, Dalian University of Technology, Dalian, Liaoning Province 116024, PR China
b Graduate School of Management, Clark University, 950 Main Street, Worcester, MA 01610-1477, USA

Motives and barriers of the remanufacturing industry in China

Shuoguo Wei a, Dongbo Cheng b,*, Erik Sundin c, Ou Tang a

a Division of Production Economics, Linköping University, 58183, Sweden
b School of Economics and Management, Tongji University, 200092, China
c Division of Manufacturing Engineering, Linköping University, 58183, Sweden

Integration of Life Cycle Assessment with computer-aided product development by a feature-based approach

Jing Tao a, Zhaorui Chen a, Suiran Yu a,*, Zhifeng Liu b

a School of Mechanical & Power Engineering, Shanghai Jiao Tong University, Shanghai, China
b Intelligent Manufacturing Institute, Hefei University of Technology, Hefei, China
A life-cycle assessment of household refrigerators in China

Rufeng Xiao, You Zhang, Xin Liu, Zengwei Yuan*

State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China

Determinants of residents' e-waste recycling behaviour intentions: Evidence from China

Zhaohua Wang a, b, c, *, Dongxue Guo a, b, c, Xiaomeng Wang a, b, c

a School of Management and Economics, Beijing Institute of Technology, 100081 Beijing, China
b Centre for Energy & Environmental Policy Research, Beijing Institute of Technology, 100081 Beijing, China
c Collaborative Innovation Centre of Electric Vehicles in Beijing, China

E-waste collection channels and household recycling behaviors in Taizhou of China

Xinwen Chi a, *, Mark Y.L. Wang b, Markus A. Reuter c

a School of Business, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
b Department of Resource Management and Geography, Melbourne School of Land and Environment, The University of Melbourne, 221 Bouverie Street, Carlton, VIC 3010, Australia
c Outotec Oyj, Puolikkotie 10, FI-02230 Espoo, Finland
Comparative environmental life cycle assessment of waste mobile phone recycling in China

Jinghong Biana, Hongtao Baia, b, *, Wenchao Lia, Jianfeng Yinc, He Xua, **

a College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
b MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, PR China
c Rural Energy & Environment Agency, Ministry of Agriculture, Beijing 100026, PR China

Survey and analysis of consumers’ behaviour of waste mobile phone recycling in China

Jianfeng Yina, Yingnan Gaob, **, He Xua, *

a College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
b Policy Research Center for Environment and Economy, Ministry of Environmental Protection, Beijing 100029, PR China

Perspective of electronic waste management in China based on a legislation comparison between China and the EU

Xianlai Zenga, Jinhui Lia, *, A.L.N. Stevelsb, Lili Liua

a State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
b Design for Sustainability Lab, Delft University of Technology, 3-5655 JL Eindhoven, The Netherlands
China's toxic informal e-waste recycling: local approaches to a global environmental problem

Sabrina Orlins a, Dabo Guan b, c, *

a SynTao – Sustainability Solutions, Beijing, 100020, PR China
b School of International Development, University of East Anglia, Norwich, NR4 7JT, UK
c Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing, 100084, PR China
Viability of remanufacturing practice: a strategic decision making framework for Chinese auto-parts companies

Muhammad Dan-Asabe Abdulrahman a,1, Nachiappan Subramanian a,* , Chang Liu b, Chengqi Shu a

a Nottingham University Business School China, The University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315 100, China
b School of Economics, The University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315 100, China

Implementing extended producer responsibility: vehicle remanufacturing in China

Wang Xiang, Chen Ming*

School of Mechanical Engineering and Power Engineering, Shanghai Jiao Tong University. Shanghai 200240, PR China

Analyzing internal barriers for automotive parts remanufacturers in China using grey-DEMATEL approach

Xiqiang Xia a, Kannan Govindan b,* , Qinghua Zhu a

a Faculty of Management and Economics, Dalian University of Technology, Dalian, Liaoning Province 116024, PR China
b Operations and Supply Chain Management, Department of Business and Economics, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
Sustainability evaluation of end-of-life vehicle recycling based on emergy analysis: a case study of an end-of-life vehicle recycling enterprise in China

Yuxue Pan, Haitao Li*

Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Life cycle assessment of end-of-life vehicle recycling processes in China—take Corolla taxis for example

Wenchao Li a, Hongtao Bai a, *, Jianfeng Yin a, b, He Xu a, **

a College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
b Rural Energy & Environment Agency, Ministry of Agriculture, Beijing 100026, PR China

Comparative Life Cycle Assessment of remanufactured liquefied natural gas and diesel engines in China

Junli Shi a, b, Tao Li a, *, Shitong Peng a, Zhichao Liu a, Hongchao Zhang a, c, Qiuhong Jiang a

a Institute of Sustainable Design and Manufacturing, Dalian University of Technology, Dalian 116024, China
b School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
c Texas Tech University, Lubbock, TX 79409-3061, USA
However, major part of these attempts has been lacking a systematic approach and therefore the CE approach appears not only apposite but also inevitable.

M. Lieder, A. Rashid / Journal of Cleaner Production 115 (2016) 36-51
Thank you

Acknowledgements

This research is supported by the EC funded project FUTURING (Grant No. 723633), the EPSRC UK (Engineering and Physical Sciences Research Council) project AUTOREMAN (Grant No. EP/N018524/1) and the International Science & Technology Cooperation Program of China (Grant No. 2015DFA70340).